Moving grids for hyperbolic problems

Konstantin Lipnikov Mikhail Shashkov

Theoretical Division, T-7, Los Alamos National Laboratory

MS B284, Los Alamos, NM 87545

lipnikov@t7.lanl.gov, shashkov@lanl.gov

Contents

- Objectives
- Exact error functional
- Direct minimization and equidistribution principle
- Approximate error functional
- Grid smoothing
- Viscous and inviscous Burgers equation
- Conclusion

Objectives (1/4)

Let us consider the one-dimensional viscous Burgers equation:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}, \qquad x \in (0, 1), \qquad t \in (0, T),$$

subject to the initial condition

$$u(x,0) = u_0(x).$$

The look-ahead strategy:

- Assume that the data at $t = t^n$ are given and exact.
- Derive exact and approximate error functionals at $t = t^{n+1}$.
- Build an adapted grid minimizing the approximate error functional.
- Interpolate data to the adapted grid and perform one time step.

Objectives (2/4)

Let $t = t^n$. We consider a grid

$$0 = x_0^n < x_1^n < \dots < x_{M+1}^n = 1$$

and define

$$x_{i+1/2}^n = (x_{i+1}^n + x_i^n)/2, \qquad h_{i+1/2}^n = x_{i+1}^n - x_i^n.$$

Let

$$\bar{u}_{i+1/2}^{0} = \frac{1}{h_{i+1/2}} \int_{x_{i}^{0}}^{x_{i+1}^{0}} u_{0}(x) dx.$$

Objectives (3/4)

Let us analyze an error functional associated with the donor scheme:

$$\bar{u}_{i+1/2}^{n+1} = \mathcal{L}_{i+1/2}^{n} (\bar{u}^{n})
= \bar{u}_{i+1/2}^{n} - \frac{\Delta t^{n}}{h_{i+1/2}} (f_{i+1}^{n} - f_{i}^{n}) + \frac{\varepsilon \Delta t^{n}}{h_{i+1/2}^{n}} \left(\left[\frac{\delta u^{n}}{\delta x} \right]_{i+1} - \left[\frac{\delta u^{n}}{\delta x} \right]_{i} \right)$$

where f_i^n denotes the flux at point x_i^n ,

$$f_i^n = \frac{1}{2} \begin{cases} (\bar{u}_{i+1/2}^n)^2 & \text{if } \bar{u}_{i+1/2} + \bar{u}_{i-1/2} \ge 0, \\ (\bar{u}_{i-1/2}^n)^2 & \text{otherwise,} \end{cases}$$

and

$$\min_{i} \Delta t^{n} \left(\frac{\bar{u}_{i+1/2}^{n}}{h_{i+1/2}^{n}} + \frac{2\varepsilon}{(h_{i+1/2}^{n})^{2}} \right) < 1.$$

Objectives (4/4)

Consider the following minimization problem:

$$\min_{x_1^n, \dots, x_M^n} F_{ex}^n(\{x_i^n\})$$

where

$$F_{ex}^n = \sum_{i=0}^M \int_{x_i^n}^{x_{i+1}^n} |u(x, t^{n+1}) - \bar{u}_{i+1/2}^{n+1}|^2 dx = \sum_{i=0}^M \int_{x_i^n}^{x_{i+1}^n} |u(x, t^{n+1}) - \mathcal{L}_{i+1/2}^n (\bar{u}^n)|^2 dx$$

The stability condition and Taylor expansion give

$$\int_{x_{i}^{n}}^{x_{i+1}^{n}} \left(u(x, t^{n+1}) - \mathcal{L}_{i+1/2}^{n}(\{\bar{u}^{n}\}) \right)^{2} dx =$$

$$\left(\frac{\partial u}{\partial x} \Big|_{x_{i+1/2}^{n}} \right)^{2} \left[\frac{(h_{i+1/2}^{n})^{3}}{12} + \frac{(\Delta t^{n} u_{i+1/2}^{n})^{2}}{4} \frac{(h_{i+1/2}^{n} - h_{i-1/2}^{n})^{2}}{h_{i+1/2}^{n}} \right] + O(h_{i+1/2}^{n})^{4}$$

Objectives (4/4)

Consider the following minimization problem:

$$\min_{x_1^n,...,x_M^n} F_{ex}^n(\{x_i^n\})$$

where

$$F_{ex}^{n} = \sum_{i=0}^{M} \int_{x_{i}^{n}}^{x_{i+1}^{n}} |u(x, t^{n+1}) - \bar{u}_{i+1/2}^{n+1}|^{2} dx = \sum_{i=0}^{M} \int_{x_{i}^{n}}^{x_{i+1}^{n}} |u(x, t^{n+1}) - \mathcal{L}_{i+1/2}^{n}(\bar{u}^{n})|^{2} dx$$

The stability condition and Taylor expansion give

$$\int_{x_i^n}^{x_{i+1}^n} \left(u(x, t^{n+1}) - \mathcal{L}_{i+1/2}^n(\{\bar{u}^n\}) \right)^2 dx \approx \left(\left. \frac{\partial u}{\partial x} \right|_{x_{i+1/2}^n} \right)^2 \left[\frac{(h_{i+1/2}^n)^3}{12} \right].$$

Exact error functional (1/2)

Consider a grid

$$0 = x_0 < x_1 < \ldots < x_{M+1} = 1$$

and define

$$x_{i+1/2} = (x_{i+1} + x_i)/2,$$
 $h_{i+1/2} = x_{i+1} - x_i.$

Let $f^h(x)$ be a piecewise constant approximation of f(x). Then, the minimum of the functional

$$\Phi(\lbrace x_i \rbrace, \lbrace \bar{f}_{i+1/2} \rbrace) = \int_{0}^{1} (f(x) - f^h(x))^2 dx = \sum_{i=0}^{M} \int_{x_i}^{x_{i+1}} (f(x) - \bar{f}_{i+1/2})^2 dx$$

is achieved when

$$\bar{f}_{i+1/2} = \frac{1}{h_{i+1/2}} \int_{x_i}^{x_{i+1}} f(x) dx.$$

Exact error functional (2/2)

Thus, the problem

$$\min_{x_1, \dots, x_M, \, \bar{f}_{1/2}, \dots, \bar{f}_{M+1/2}} \Phi(\{x_i\}, \{\bar{f}_{i+1/2}\})$$

is reduced to

$$\min_{x_1, \dots, x_M} F_{ex}(\{x_i\}), \qquad F_{ex}(\{x_i\}) = \sum_{i=0}^M \int_{x_i}^{x_{i+1}} (f(x) - \bar{f}_{i+1/2})^2 dx.$$

The Taylor expansion with the Lagrange remainder gives

$$\min_{x_1, \dots, x_M} F_{ex}(\{x_i\}), \qquad F_{ex}(\{x_i\}) = \frac{1}{12} \sum_{i=0}^M \left(\frac{\partial f}{\partial x} \Big|_{\substack{x_{i+1/2}^*}} \right)^2 h_{i+1/2}^3$$

Minimization & equidistribution (1/4)

Lemma. Let $e_{i+1/2}(\cdot,\cdot)\colon \Re^2\to \Re$ be a set of functions defined by

$$e_{i+1/2}(x_i, x_{i+1}) = \int_{x_i}^{x_{i+1}} g(x) dx, \qquad 0 \le x_i \le x_{i+1} \le 1,$$

where $g(x) \ge 0$ is an arbitrary bounded function. Then

$$\min_{x_1,\dots x_M} \sum_{i=0}^{M} e_{i+1/2}^p(x_i, x_{i+1}) = \frac{\mathcal{E}^p}{(M+1)^{p-1}}$$

where p is a positive integer and

$$\mathcal{E} = \sum_{i=0}^{M} e_{i+1/2}(x_i, x_{i+1}) = \int_{0}^{1} g(x) dx.$$

Moreover, the minimum is achieved when $e_{i+1/2}(x_i, x_{i+1}) = \mathcal{E}/(M+1)$.

Minimization & equidistribution (1/4)

Lemma. Let $e_{i+1/2}(\cdot,\cdot)\colon \Re^2\to \Re$ be a set of functions defined by

$$e_{i+1/2}(x_i, x_{i+1}) = \int_{x_i}^{x_{i+1}} g(x) dx, \qquad 0 \le x_i \le x_{i+1} \le 1,$$

where $g(x) \ge 0$ is an arbitrary bounded function. Then

$$\min_{x_1,\dots x_M} \sum_{i=0}^{M} e_{i+1/2}^p(x_i, x_{i+1}) = \frac{\mathcal{E}^p}{(M+1)^{p-1}}$$

where p is a positive integer and

$$\mathcal{E} = \sum_{i=0}^{M} e_{i+1/2}(x_i, x_{i+1}) = \int_{0}^{1} g(x) dx.$$

Moreover, the minimum is achieved when $e_{i+1/2}(x_i, x_{i+1}) = \mathcal{E}/(M+1)$.

Minimization & equidistribution (2/4)

We introduce additional notations:

$$\hat{\omega}_{i+1/2} = \left(\frac{1}{12} \left. \frac{\partial f}{\partial x} \right|_{x_{i+1/2}^*} \right)^{2/3}$$
 and $\hat{e}_{i+1/2} = \hat{\omega}_{i+1/2} h_{i+1/2}$.

Then, we can rewrite the functional F_{ex} as follows:

$$F_{ex}(\{x_i\}) = \frac{1}{12} \sum_{i=0}^{M} \left(\frac{\partial f}{\partial x} \Big|_{\substack{x_{i+1/2}^* \\ i+1/2}} \right)^2 h_{i+1/2}^3 = \sum_{i=0}^{M} \hat{e}_{i+1/2}^3 = \sum_{i=0}^{M} \hat{\omega}_{i+1/2}^3 h_{i+1/2}^3.$$

It is obvious that

$$\hat{e}_{i+1/2} \to \int_{x_i}^{x_{i+1}} \left| \frac{\partial f}{\partial x} \right|^{2/3} dx$$
 and $\sum_{i=0}^{M} \hat{e}_{i+1/2} \to \int_{0}^{1} \left| \frac{\partial f}{\partial x} \right|^{2/3} dx$.

Minimization & equidistribution (2/4)

We introduce additional notations:

$$\hat{\omega}_{i+1/2} = \left(\frac{1}{12} \left. \frac{\partial f}{\partial x} \right|_{x_{i+1/2}^*} \right)^{2/3}$$
 and $\hat{e}_{i+1/2} = \hat{\omega}_{i+1/2} h_{i+1/2}$.

Then, we can rewrite the functional F_{ex} as follows:

$$F_{ex}(\{x_i\}) = \frac{1}{12} \sum_{i=0}^{M} \left(\frac{\partial f}{\partial x} \Big|_{\substack{x_{i+1/2}^* \\ i+1/2}} \right)^2 h_{i+1/2}^3 = \sum_{i=0}^{M} \hat{e}_{i+1/2}^3 = \sum_{i=0}^{M} \hat{\omega}_{i+1/2}^3 h_{i+1/2}^3.$$

In other words, taking $g(x) = |\partial f/\partial x|^{2/3}$, we get

$$\hat{e}_{i+1/2} \to \int_{x_i}^{x_{i+1}} g(x) dx$$
 and $\sum_{i=0}^{M} \hat{e}_{i+1/2} \to \int_{0}^{1} g(x) dx$.

Minimization & equidistribution (3/4)

The equidistribution principle,

$$\hat{e}_{i+1/2} = \hat{e}_{i-1/2}, \qquad i = 1, \dots, M,$$

may be rewritten as follows:

$$\hat{\omega}_{i+1/2}(x_{i+1}-x_i)-\hat{\omega}_{i-1/2}(x_i-x_{i-1})=0.$$

It is a discretization of the non-linear elliptic equation

$$\frac{\partial}{\partial \xi} \left(\omega(x) \frac{\partial x}{\partial \xi} \right) = 0, \qquad x(0) = 0, \quad x(1) = 1,$$

on a uniform grid with the coefficient $\omega(x)$ given by

$$\omega(x) = \left| \frac{\partial f}{\partial x} \right|^{2/3}$$
.

Minimization & equidistribution (4/4)

A discrete analog of the nonlinear elliptic equation can be directly derived from

$$\nabla F_{ex} = 0.$$

Recall that

$$F_{ex}(\{x_i\}) = \sum_{i=0}^{M} \int_{x_i}^{x_{i+1}} (f(x) - \bar{f}_{i+1/2})^2 dx.$$

Then

$$\frac{\partial F_{ex}}{\partial x_i} = 2f(x_i) - \bar{f}_{i-1/2} - \bar{f}_{i+1/2} = 0.$$

The Taylor expansion at point x_i results in

$$\left. \frac{\partial f}{\partial x} \right|_{x_i} \left(h_{i+1/2} - h_{i-1/2} \right) + \frac{1}{3} \left. \frac{\partial^2 f}{\partial x^2} \right|_{x_i} \left(h_{i+1/2}^2 + h_{i-1/2}^2 \right) = 0.$$

Approximate error functional (1/7)

Let R_h be an interpolation operator from grid $\{x_i^0\}$ to grid $\{x_i\}$. Consider the following minimization problem:

$$\min_{x_1, \dots, x_M} \int_0^1 |f(x) - [R_h(f^{h,0})](x)|^2 dx.$$

We assume that

- \blacksquare R_h is exact for linear functions;
- \blacksquare R_h is conservative.

$$\int_{0}^{1} |f(x) - [R_{h}(f^{h,0})](x)|^{2} dx = \sum_{i=0}^{M} \int_{x_{i}}^{x_{i+1}} |f(x) - \bar{f}_{i+1/2} + O(h_{i+1/2}^{2})|^{2} dx$$

$$= \sum_{i=0}^{M} \left[\frac{1}{12} \left(\frac{\partial f}{\partial x} \Big|_{x_{i+1/2}^{*}} \right)^{2} h_{i+1/2}^{3} + O(h_{i+1/2}^{4}) \right].$$

Approximate error functional (2/7)

Recall that

$$F_{ex} = \sum_{i=0}^{M} \hat{\omega}_{i+1/2}^3 h_{i+1/2}^3.$$

Since the precise computation of coefficients $\hat{\omega}_{i+1/2}$ is impossible, they are replaced by computable coefficients $\omega_{i+1/2}$ such that $\omega_{i+1/2} \approx \hat{\omega}_{i+1/2}$,

$$\omega_{i+1/2} = \frac{1}{h_{i+1/2}^3} \sum_{k=0}^{M} \int_{\check{x}_{ik}}^{\hat{x}_{ik}} \left| \bar{f}_{k+1/2}^0 + \left[\frac{\delta f^{h,0}}{\delta x} \right]_{k+1/2}^{(x-x_{k+1/2})} - \left[R_h(f^{0,h}) \right](x) \right|^2 dx$$

where $[\hat{x}_{ik}, \check{x}_{ik}] = [x_i, x_{i+1}] \cap [x_k^0, x_{k+1}^0]$. This results in an approximate minimization problem:

$$\min_{x_1, \dots, x_M} F_{ap}(\{x_i\}), \qquad F_{ap}(\{x_i\}) = \sum_{i=0}^M \omega_{i+1/2}^3 h_{i+1/2}^3.$$

Approximate error functional (3/7)

$$\frac{\partial}{\partial \xi} \left(\omega(x) \frac{\partial x}{\partial \xi} \right) = 0, \qquad x(0) = 0, \quad x(1) = 1,$$

Algorithm (equidistribution principle)

For
$$k = 1, \ldots, K_{max}$$
 do

- 1. For the given grid $\{x_i^k\}$ compute values $\omega_{i+1/2}^k$, $i=0,\ldots,M$.
- 2. Perform one Gauss-Seidel sweep

$$\omega_{i+1/2}^k(x_{i+1}^k-x_i^{k+1})-\omega_{i-1/2}^k(x_i^{k+1}-x_{i-1}^{k+1})=0, \qquad i=1,\ldots,M.$$

3. Stop iterations if $\max_{i} |x_i^k - x_i^{k+1}| \leq TOL$ where TOL is the user given tolerance.

Approximate error functional (4/7)

$$\min_{x_1, \dots, x_M} F_{ap}(\{x_i\}), \qquad F_{ap}(\{x_i\}) = \sum_{i=0}^M \omega_{i+1/2}^3 h_{i+1/2}^3$$

Algorithm (direct minimization)

For
$$k = 1, \ldots, K_{max}$$
 do

- 1. For the given grid $\{x_i^k\}$ compute values $\omega_{i+1/2}^k$, $i=0,\ldots,M$.
- 2. Perform one Gauss-Seidel sweep

$$\min_{x_{i}^{k+1}} \left\{ \left[\hat{\omega}_{i+1/2}^{k+1} \left(x_{i+1}^{k} - x_{i}^{k+1} \right) \right]^{3} + \left[\hat{\omega}_{i-1/2}^{k+1} \left(x_{i}^{k+1} - x_{i-1}^{k+1} \right) \right]^{3} \right\},$$

where $i=1,\ldots,M,$ R_h is the interpolation operator from grid $\{x_i^k\}$ to grid $\{x_i^{k+1}\}$, and $\hat{\omega}^{h,k+1}=R_h(\omega^{h,k})$.

3. Stop iterations if $\max_{i} |x_i^k - x_i^{k+1}| \le TOL$.

Approximate error functional (4/7)

$$\sum_{i=0}^{M} \omega_{i+1/2}^{k} h_{i+1/2}^{k} = \sum_{i=0}^{M} \hat{\omega}_{i+1/2}^{k+1} h_{i+1/2}^{k+1}.$$

Algorithm (direct minimization)

For
$$k = 1, \ldots, K_{max}$$
 do

- 1. For the given grid $\{x_i^k\}$ compute values $\omega_{i+1/2}^k$, $i=0,\ldots,M$.
- 2. Perform one Gauss-Seidel sweep

$$\min_{x_{i}^{k+1}} \left\{ \left[\hat{\omega}_{i+1/2}^{k+1} \left(x_{i+1}^{k} - x_{i}^{k+1} \right) \right]^{3} + \left[\hat{\omega}_{i-1/2}^{k+1} \left(x_{i}^{k+1} - x_{i-1}^{k+1} \right) \right]^{3} \right\},$$

where $i=1,\ldots,M,$ R_h is the interpolation operator from grid $\{x_i^k\}$ to grid $\{x_i^{k+1}\}$, and $\hat{\omega}^{h,k+1}=R_h(\omega^{h,k})$.

3. Stop iterations if $\max_{i} |x_i^k - x_i^{k+1}| \le TOL$.

Approximate error functional (5/7)

Let us consider a test function f(x) given by

$$f(x) = 1 - \frac{9r_1 + 5r_1^5}{10(r_1 + r_1^5 + r_2)}, \quad r_1 = \exp\frac{1/2 - x}{20\varepsilon}, \quad r_2 = \exp\frac{3/8 - x}{2\varepsilon},$$

with $\varepsilon = 0.005$. Let

$$E(\{x_i\}) = \sqrt{F_{ex}(\{x_i\})}$$

M	$E(\{x_i^{un}\})$	$E(\{x_i^{ex,st}\})$	$E(\{x_i^{ap,st}\})$	$E(\{x_i^{ap,eq}\})$
16	2.99e-2	1.01e-2	1.19e-2	1.19e-2
32	1.59e-2	4.99e-3	5.22e-3	5.22e-3
64	7.99e-3	2.48e-3	2.51e-3	2.51e-3
128	4.00e-3	1.24e-3	1.24e-3	1.24e-3

Approximate error functional (6/7)

Approximate error functional (7/7)

Grid smoothing (1/4)

Let the mesh steps satisfy the following condition:

$$\frac{\alpha}{\alpha+1} \le \frac{h_{i-1/2}}{h_{i+1/2}} \le \frac{\alpha+1}{\alpha}, \qquad i=1,\ldots,M.$$

Lemma. Let $\omega_{i+1/2}$, $i=0,\ldots,M$, be given values of a monitor function. The values $\tilde{\omega}_{i+1/2}$, $i=0,\ldots,M$, of a smoothed monitor function satisfying

$$\frac{\alpha}{\alpha+1} \le \frac{\tilde{\omega}_{i+1/2}}{\tilde{\omega}_{i-1/2}} \le \frac{\alpha+1}{\alpha}, \qquad i=1,\ldots,M,$$

can be computed by solving the system of M+1 linear equations:

$$\tilde{\omega}_{i+1/2} - \alpha(\alpha+1)(\tilde{\omega}_{i+3/2} - 2\tilde{\omega}_{i+1/2} + \tilde{\omega}_{i-1/2}) = \omega_{i+1/2},$$

Grid smoothing (1/4)

Let the mesh steps satisfy the following condition:

$$\frac{\alpha}{\alpha+1} \le \frac{\omega_{i+1/2}}{\omega_{i-1/2}} \le \frac{\alpha+1}{\alpha}, \qquad i=1,\ldots,M.$$

Lemma. Let $\omega_{i+1/2}$, $i=0,\ldots,M$, be given values of a monitor function. The values $\tilde{\omega}_{i+1/2}$, $i=0,\ldots,M$, of a smoothed monitor function satisfying

$$\frac{\alpha}{\alpha+1} \le \frac{\tilde{\omega}_{i+1/2}}{\tilde{\omega}_{i-1/2}} \le \frac{\alpha+1}{\alpha}, \qquad i=1,\ldots,M,$$

can be computed by solving the system of M+1 linear equations:

$$\tilde{\omega}_{i+1/2} - \alpha(\alpha+1)(\tilde{\omega}_{i+3/2} - 2\tilde{\omega}_{i+1/2} + \tilde{\omega}_{i-1/2}) = \omega_{i+1/2},$$

where $\tilde{\omega}_{-1/2} = \omega_{1/2}$ and $\tilde{\omega}_{M+3/2} = \omega_{M+1/2}$.

Grid smoothing (2/4)

Algorithm (direct minimization with smoothing)

For
$$k = 1, \ldots, K_{max}$$
 do

- 1. For the given grid $\{x_i^k\}$ compute values $\omega_{i+1/2}^k$, $i=0,\ldots,M$.
- 2. Compute the smoothed values $\tilde{\omega}_{i+1/2}^k$, $i=0,\ldots,M$, by solving the tridiagonal system.
- 3. Perform one Gauss-Seidel sweep

$$\min_{x_i^{k+1}} \left\{ \left[\hat{\omega}_{i+1/2}^{k+1} \left(x_{i+1}^k - x_i^{k+1} \right) \right]^3 + \left[\hat{\omega}_{i-1/2}^{k+1} \left(x_i^{k+1} - x_{i-1}^{k+1} \right) \right]^3 \right\},\,$$

where i = 1, ..., M, R_h is the interpolation operator from grid $\{x_i^k\}$ to grid $\{x_i^{k+1}\}$, and $\hat{\omega}^{h,k+1} = R_h(\tilde{\omega}^{h,k})$.

4. Stop iterations if $\max_{i} |x_i^k - x_i^{k+1}| \leq TOL$ where TOL is the user given tolerance.

Grid smoothing (3/4)

Recall that

$$E({x_i}) = \sqrt{F_{ex}({x_i})}.$$

M	$E(\{x_i^{ap,st}\})$	$E(\{\tilde{x}_i^{ap,st,sm}\})$	$E(\{\tilde{x}_i^{ap,st,sm}\})$
16	1.19e-2	1.62e-2	1.68e-2
32	5.22e-3	6.01e-3	6.50e-3
64	2.51e-3	2.68e-3	2.66e-3
128	1.24e-3	1.28e-3	1.25e-3

Grid smoothing (4/4)

Burgers equation (1/2)

Let T=0.9, $\varepsilon=0.005$ and

$$E(\lbrace x_i^N \rbrace) = \left[\sum_{i=0}^{M} \int_{x_i^N}^{x_{i+1}^N} (u(x, T) - \bar{u}_{i+1/2}^N)^2 dx \right]^{1/2}.$$

Burgers equation (2/2)

Let T=0.5, $\varepsilon=0$ and the initial condition be the periodic function

$$u_0(x) = 0.5 + \sin(2\pi x).$$

Conclusion

- The error introduced by the numerical scheme can be ignored even for lower order time integration schemes.
- The error introduced by the numerical interpolation can be ignored when the interpolation operator is more accurate than the discretization.
- Necessity of a grid smoothing has been observed in many numerical experiments.
- The algorithms have shown a robust behavior for 1D Burgers equation.

